
By Rob Woolley, Principal Technologist, Wind River

Deploying Embedded Applications
Faster with Containers

DEPLOYING EMBEDDED APPLICATIONS FASTER WITH CONTAINERS

2 | White Paper2 | White Paper

INTRODUCTION

Container technology is fundamentally changing how systems are being developed,
tested, deployed, and managed. People are most familiar with containers as part of
cloud-native architectures in which applications are decoupled from the infrastructure
— including hardware and operating systems — on which they are running.

The benefits of this approach include being able to automate the software pipeline to
remove manual errors, standardize tools, and accelerate the rate of product iterations.
With a CI/CD pipeline, companies can leverage continuous integration (CI) where code
changes are merged in a central repository with continuous delivery (CD), thereby
providing the ability to automate the entire software delivery process and deliver high-
quality software faster.

Embedded developers can also benefit from the infrastructure-agnostic, scalable
execution environment enabled by containers. Imagine a design process — from
development to test to deployment to production to management — in which
developers can share resources, pipelines, and results across the team. Instead
of being limited by the number of development boards available, companies could
exploit the elasticity of the cloud to set up multiple instances of a system on demand.

However, traditional embedded application development and deployment has
significant differences compared to a cloud-native architecture:

•	 It is tightly coupled to specific hardware.
•	 It is written in lower-level languages such as C/C++.
•	 It interacts directly with hardware (e.g., peripherals).
•	 It requires specialized development and management tools.
•	 It tends to have a long lifecycle and stateful execution.
•	 It faces an increasing diversity of end hardware and software deployed in the field.

To bridge container technology to the embedded world requires that embedded
development adapt to a cloud native–inspired workflow, but in a way that maintains
the requirements of applications, including real-time determinism, optimized memory
footprint, an integrated tool chain for cross-compiling and linking, tools for security
scanning and quality assurance, and the ability to secure the build environment.

This article will explore the use of containers in the embedded design process and
address how to meet the specific performance and cybersecurity challenges particular
to embedded devices operating at the edge.

TABLE OF CONTENTS

Introduction . 2
Container Use Cases . 3
The Embedded Development Pipeline . 4
Performance and Cybersecurity . 4
Conclusion . 5

DEPLOYING EMBEDDED APPLICATIONS FASTER WITH CONTAINERS

3 | White Paper

CONTAINER USE CASES

Figure 1 shows the U.S. Department of Defense’s DevSecOps development pipeline and how designs progress through the pipeline. Figure 2

shows the pipeline when containers are in use. This demonstrates how tools can be integrated into workflows and shared across different

groups to ensure consistency, regardless of the service they perform.

DoD Enterprise DevSecOps Reference Design: CNCF Kubernetes

Build App

Security
Test(s)

SAST Unit Test Publish
Artifact(s) Deploy to Test Deploy to

Pre-Prod
Deploy to

Production
Release and

Deliver

Security Scan

Code
Repository Build Artifacts

Deliver
Pipeline
Control Test

Third-Party
Tool

Integration

CNFC Kubernetes Deploy

Logging

Scale

Monitor

Test
Environment

Integration
Environment

Production
Environment

DoD Application

DevSecOps Services Container Services Operation Services

Dev Environment Test

So
ft

w
ar

e
Fa

ct
or

y
W

or
kf

lo
w

s
To

ol
s

CM Verification and Audit

CM Control

Deploy to Integration Env Release and Deliver Deploy to Production Env

Run Automated
Test Suite

Run Automated
Test Suite

Security Test(s)

Security Test(s)

IDE

Code
Repository

Build Tool

Security
Test(s)

Test
Tool(s)

Artifact
Repository

Container
Registry

Security
Scan

CI/CD
Orchestrator

Test Environment Integration
Environment

Release
Container
Registry

Release
Artifact

Repository

Production
Environment

CI/CD
Orchestrator

SAST/DAST

Unit Test

Publish Artifacts

Build Container Image

Container Security Scan

Deploy to Test Env

Tools
(Based upon DoD Enterprise
Hardened Containers)

Workflows CM Verification and Audit

CM Control

Dev Environment
Test

Container
Orchestration

OCI-Compliant Containers

CNCF-Certified Kubernetes

Hosting
Environment DoD Cloud DoD Data Center(s) Bare Metal Server(s)

So
ft

w
ar

e
Fa

ct
or

y

DoD Enterprise DevSecOps Reference Design: CNCF Kubernetes

Figure 1. The U.S. Department of Defense’s DevSecOps development pipeline

Figure 2. The same DevSecOps development pipeline when using containers

DEPLOYING EMBEDDED APPLICATIONS FASTER WITH CONTAINERS

4 | White Paper

Even though the design is moving through different environments,

a container ensures that there is consistency between builds. For

example, because tools are part of the container, groups don’t need

to install multiple versions of tools on their computers to work

with each design. In fact, containers enable developers to revert to

previous builds and produce the same results as the original build,

even years after a product has been deployed.

Note that containers are not limited to development alone. There

are a huge number of operational use cases that help drive

the convergence of IT and OT. The same tools can be used for

deployment and managing software, thus standardizing software

development. Management and orchestration policies can be

shared, simplifying the coordination of updates. This is especially

important as the frequency of updates increases from the

introduction of new capabilities, bug fixes, and necessary security

updates. Containers also simplify the software supply chain.

Effectively, they are a complete bill of materials, showing everything

that went into building a specific product.

THE EMBEDDED DEVELOPMENT PIPELINE

As stated earlier, the requirements of embedded systems introduce

a lot of new issues compared to a typical cloud-native application.

For example, edge devices might be physically accessible. They

may need to operate in constrained, unreliable networks. Devices

may go offline for long periods of time to conserve battery life. It

can be difficult to determine whether a device has failed or simply

been moved out of network range. Devices can be stolen. And a

device may be the only one serving an area, so it cannot fail over

to another device if there’s a problem or it needs to go offline for

an update.

To bring container technology to embedded applications,

Wind River® has created VxWorks® containers. Instead of using a

traditional container, a VxWorks container is a container image that

can be used to accommodate the real-time needs of embedded

applications. At a high level, a container is a runtime environment

plus applications. A container image is a package that contains

everything needed to create the application, including libraries and

executables (i.e., tools).

VxWorks containers were designed to follow the same OCI

specifications used by other container technologies (see Figure 3).

This allows them to be managed by the same standard tools that

cloud-native developers are already familiar with, such as Docker

for adding a container to a registry. However, the container image

also includes parameters for how to run the real-time process

(RTP), including RTP stack size, priority, and other real-time

considerations.

Shell commands are supported to allow developers to access

containers from the VxWorks command prompt. While this could

be used in a production environment, Wind River has built in a

C-based API. This powerful API allows embedded development and

deployment teams to manage systems with their existing tools. It

also supports services such as programmatic pull, create, kill, etc.,

giving teams tremendous flexibility in how systems are deployed

and managed.

A mount namespace is supported as well, enabling applications

and containers to be kept separate from each other and managed

independently. This is useful when applications employ different

versions of software within the same container. In addition, as

devices at the edge become more compute capable, there is the

opportunity to consolidate different workloads onto the same

device. This leads to mixed-criticality systems that perform before

critical and noncritical tasks. Containers provide a powerful way to

manage the complexity of mixed-criticality systems by isolating the

different components from each other.

PERFORMANCE AND CYBERSECURITY

Wind River has kept the requirements of embedded applications

top of mind while developing VxWorks containers. The size

of the VxWorks container engine is 353 KB, including all

dependencies. The runtime itself is under 100 KB, making it suitable

for real-time systems. The OCI container images supported by

VxWorks are compressed archives of the application you wish to

run inside the container. The runtime will decompress and unpack

the image to create a bundle when it is pulled from the container

!
"

!
2

#
$

%
&

'
#

(
%

)
*

(
+

#
,

-
-

#
(

%
.

/
0

1
#

(
*

1
*

(
)

*
'

Tool

API

Images

Registry

Container Engine

Containers

Ap
p

A

Ap
p

B

Ap
p

C

Ap
p

D

Management

Figure 3. Container delivery

Wind River is a global leader of software for the intelligent edge. Its technology has been powering the safest, most secure devices since 1981 and is in billions of products. Wind River is accelerating the digital
transformation of mission-critical intelligent systems that demand the highest levels of security, safety, and reliability.

© 2021 Wind River Systems, Inc. The Wind River logo is a trademark of Wind River Systems, Inc., and Wind River and VxWorks are registered trademarks of Wind River Systems, Inc. Rev. 09/2021

DEPLOYING EMBEDDED APPLICATIONS FASTER WITH CONTAINERS

registry. While this takes time to complete, it only needs to be done

once. Containers can be started quickly from a bundle and can

even run multiple copies at the same time. There is also support

for overlays so that if multiple containers are using the same library,

only one copy need be stored.

VxWorks containers provide hard real-time performance and can

run certified real-time processes. By design, the effect of running

an RTP in a container introduces very little overhead, introducing

negligible impact on performance compared to a native runtime.

Figure 4 shows the embedded capabilities of VxWorks containers

compared to Linux and Kubernetes containers. Note that many

of the Linux containers’ capabilities not supported by VxWorks

containers are not relevant to embedded applications.

Security is an especially important consideration for connected

embedded systems at the edge. To protect systems, VxWorks

containers do not expose container management to the network

by default. Using the C-based API, developers can ensure that

only trusted tools and methods have access. When containers are

downloaded from a registry, a system can do this only from trusted

registries, with the entire communication encrypted using a secure

TLS connection. Furthermore, containers can be signed to ensure

that they come from a trusted source.

VxWorks also employs secure boot technology so that a chain

of trust can be established. This is achieved by validating all the

software components, from the system’s hardware root of trust all

the way up to the application.

CONCLUSION

Containers make it possible to automate parts of the software

development and deployment process. VxWorks containers enable

developers to create, test, deploy, and manage embedded systems

faster and more accurately. They accelerate development today and

will enable the engineers of tomorrow to continue to maintain these

systems over their extended lifecycles.

Learn how containers can accelerate your embedded application

development: www.windriver.com/products/vxworks/evaluation

VxWorks
Certification
Hard Real-Time

Linux
Linux System Calls
Seccomp filters
Linux Drivers
Docker Engine API
OSTree

Namespaces
POSIX API
OCI Artifacts (incl. OCI images)
Package Management (Conan.io, opkg, …)
OCI Specifications (Dist/Runtime/Image)
Enterprise Infrastructure
Overlay FS

Kubernetes
Overlay Network
CNI, CRI, CSI
Service Meshes

Figure 4. The embedded capabilities of VxWorks containers

compared to Linux containers

https://www.windriver.com/products/vxworks/evaluation

