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EXECUTIVE SUMMARY

Functional safety is increasingly critical across a range of markets, and more powerful and 

complex software solutions are required in areas such as autonomous driving and related 

services, intelligent avionics devices, and self-organized factory floors. The higher the criticality 

and the less human control is involved, the higher the inherent risk for the airplane or car, as 

reflected by the Safety Integrity Level or Design Assurance Level associated with the device.

Meeting the requirements of safety standards such as ISO 26262 (automotive) and IEC 61508 
(industrial) for high integrity levels requires rigid formal methodologies and documentation, 
not only in the development process of hardware and software but also the continuous 
monitoring and reporting of random hardware faults during the operation of the device. One 
of the methodologies commonly used for highest safety integrity is Dual-Core Lockstep, 
whose output from redundant CPUs is continuously compared to ensure detection of any 
fault that leads to output corruption. This type of system is expensive, in the need to double 
the CPU area, and it becomes less viable when applications require the computational 
power of modern multi-core SoCs with four or even 16 processor cores. In this case, the 
use of self-testing techniques such as Software Test Libraries (STL) is a common approach 
to achieve the integrity requirements of the standards.1 

Managing the complexity of a modern multi-core processor or system-on-chip (SoC) 

requires a powerful operating system (OS) platform that offers the application developer 

an abstract yet flexible programming environment such as AUTOSAR Adaptive, as well as 

robust techniques for separation, partitioning, and fault containment, as the foundation to 

achieve formal safety certification. 

The integration of a software test library, with assumptions of use guided by the internals of 

the processor design and a complex software stack for a multi-core partitioned OS, touches 

different facets of the design of safety-critical software systems. While performance and the 

amount of processor time required for the test library might be known off the top of one’s 

head, design choices about where the STL is integrated in the software stack can have a 

significant influence on system integration and validation aspects. 

Thanks to Guilherme Marshall (director, ADAS Go-to-Market) and James Scobie (director, Product 
Management) from Arm for their support in the creation of this white paper.
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OVERVIEW 
The Wind River® Helix™ Virtualization Platform (Helix Platform) is a 
true Type 1 hypervisor–based operating platform enabling mixed 
criticality OS and applications to run on multi-core processors. 
That requires robust separation and design to achieve certification 
to the highest levels of safety criticality, such as ISO 26262 ASIL D, 
DO-178C Level A, or IEC 61508 SIL 3 and SIL 4. Leveraging years of 
experience and industry leadership in safety-critical and embedded 
hypervisor software technologies, Helix Platform is building on the 
highly successful VxWorks® 653 Multi-core Edition, which is used in 
multi-core avionics systems up to the highest safety assurance level.

Helix Platform architecture leverages advanced processor 
protection features of the Arm® v8 architecture such as hypervisor 
and supervisor privilege levels, and the memory management unit 
(MMU) and system memory management unit (SMMU) to provide 
separation and fault containment for applications in independent 
partitions, as seen in the figure.

Designing a safety-certified system with Helix Platform requires 
formal documentation of processes, requirements, design, 
and verification for the complete codebase of the OS software. 
Wind River addresses this need with a commercial off-the-shelf 
evidence documentation package, including a safety manual and 
an automated verification test harness to verify the operation of 
the software on a specific customized hardware, such as an ADAS 
controller board or the primary flight display computer of an aircraft.

However, the safety processes and documentation for software 
only address systematic errors under the assumption that the 
underlying processor hardware is working correctly. At the same 
time, the safety standards authors are aware of the additional risk 
of statistical electrical or mechanical failure of hardware. Similarly 
strict certification activities are therefore required on the hardware 
side, including continuous monitoring to prove the required failure 
rates, such as <1 failure per 1 billion hours of operation at IEC 61508 
SIL 4 or ISO 26262 ASIL D for systems or subsystems.

To help OEMs achieve higher hardware diagnostic coverage more 
efficiently, Arm produces software test libraries (STL) for many of 
its processors. Compared to other diagnostic techniques such as 
logic built-in self-tests (LBIST), STLs are more flexible and can save 
significant power and silicon area. Along with source code, STL users 
get access to a safety package including a safety manual and FMEDA 
report to assist in integrating the STL within their safety concept.

The integration of this low-level STL with a complex multi-tiered 
OS creates challenges that are further amplified by the restrictions 
of safety-critical software architecture design. The frequency and 
execution time of the STL to achieve diagnostic coverage has 
direct impact on the available computational power for OS and 
applications, and this impact needs to be quantified. 

This paper will discuss different approaches for the integration of 
STL and OS and provide results based on a demonstrator using a 
Xilinx Zynq® UltraScale+ MPSoC with four Arm Cortex-A53 cores.

ARCHITECTURE 
Hardware Architecture

The Zynq® UltraScale+™ MPSoCs from AMD Xilinx form a scalable 
portfolio of heterogenous multi-processing devices. This hardware 
platform is based on the combination of 16nm FinFET+ program-
mable logic with processing systems built on Cortex-A53 and 
Cortex-R5(F) CPUs and the Arm Mali-400 MP2 GPU. 

Central to the application processing unit, Cortex-A53 is a 64-bit 
capable processor IP, released in 2014 and based on Armv8.0-A 
architecture. It features hardware virtualization capabilities to 
enable simultaneous execution and separation of multiple guest 
OSes under the control of a hypervisor, such as Helix Platform. To 
realize this, the Cortex-A53 processor implements Exception levels 
EL 0 to EL 3, each with increasing execution privileges. A typical 
software stack could be mapped to different Exception levels as per 
the figure above. 
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DMA
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Helix Platform Architecture

Helix Platform uses a Type 1 hypervisor — also known as a bare 
metal hypervisor — that runs directly on the processor to provide 
near-native real-time performance, including the direct delivery of 
interrupts to the guest OS. This approach enables higher perfor-
mance, determinism, scalability, and small footprint with minimal 
overhead suitable for safety certification. It contrasts with the Type 
2 hypervisor, which is an application running in a general purpose 
or real-time OS with a focus on convenience, abstraction, or emu-
lation. It can even provide the option of over-provisioning existing 
hardware resources, usually for IT use cases. 

The Helix Platform Type 1 hypervisor uses the processor’s dedi-
cated hypervisor privilege level and hardware virtualization support, 
enabling various 32-bit and 64-bit guest OSes and associated appli-
cations to run at separate Exception levels of the Arm architecture 
inside virtualized machines (VM), including support for OS-less 
bare metal virtual machines. The hypervisor uses MMU and SMMU 
capabilities to ensure isolation and fault containment for the differ-
ent VMs to maximize safety and security, and to enable consolida-
tion of multiple independent safe and non-safe applications into a 
single processing platform. In the context of avionics systems, the 
combination of an isolated guest OS and application is referred to 
as a partition.2

For the Armv8-A architecture, Helix Platform builds the hypervisor 
and the VxWorks guest OS from source code using modern com-
piler toolchains based on Clang/LLVM, which provide support for 
the latest C and C++ features and standards and performance ben-
efits, such as fast compilation times, low memory usage, superior 
code optimization, and integration with third-party tools for code 
analysis and quality assurance. 

The hypervisor scheduler for the VMs uses a frame scheduler 
scheme based on a repetitive sequence of fixed time windows, 
called a major frame, as depicted below. Every VM in the major 
frame has a time budget configured at build time and validated 
with the platform. This provides the option of sharing a processor 
core between multiple VMs. Helix Platform can schedule one VM 

in parallel on multiple cores within the same time window, thus 
enabling multi-core VMs, often referred to as SMP guest OSes. The 
hypervisor can synchronize the major frames on processor cores, 
or cores or groups of cores can run on independent schedules. 

Once the initialization phase is completed, the hypervisor is, for 
the most part, responsible only for switching the VMs according 
to the schedule, arbitration and emulation of hardware resources 
shared between VMs, and system-level error handling. Dedicated 
hypervisor services such as major frame schedule changes can 
be requested from a trusted guest OS using a hypercall API imple-
mented with the hypervisor call (HVC) instruction of Armv8-A 
architecture. The implementation of hypervisor services is handled 
mainly within separate single-core threads defined in a static table 
— the so-called managers. Within each time window, both man-
agers and VMs are scheduled in a priority-based scheme, so that 
high-priority managers such as the system-level exception handling 
can preempt the execution of a VM within its time window. Managers 
can also be restricted to be scheduled only in specific time windows 
instead of a VM, a technique often used to allot dedicated time for 
system-wide functionality that could otherwise interfere with VM exe-
cution, such as flushing I/O queues to storage or network hardware.

The hypervisor is leveraging the dedicated Exception level (EL) 2 of 
the Armv8 architecture, whereas the guest OS is executing on EL 1, 
with the added option of further separation of applications using EL 
0. The Trusted Firmware-A (TF-A) at the highest EL 3 of the proces-
sor is outside the scope of the OS platform, and secure monitor 
calls (SMC) are usually not performed during normal operation.

The safety evidence material from Wind River covers the VxWorks 
Cert Edition guest OS to implement safety-critical applications on EL 
1, with optional use of EL 0 for further separation within the partition. 
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Fault containment and isolation between VMs is implemented on the hypervisor level, and an ARINC 653–compliant hierarchical health 
monitoring framework provides failure reporting, escalation, and handling according to a table-based configuration. This approach enables the 
system integrator to specify the course of action to take in the event of specific errors as part of the overall system configuration. Examples 
for such actions are the warm restart of a VM following a floating-point exception in the application or switching to a safe/degraded operation 
mode schedule upon ECC memory errors.

Helix Platform is designed to support customers in the clear separation of roles and responsibilities in their system lifecycle by enabling independent 
development along with incremental updates of the platform and application code as well as the system configuration through a technique  
called independent build, link, and load (IBLL). This is based on the roles of Platform Provider, Application Developer, and System Integrator as 
defined in the DO-297 Standard3 for avionics systems and shown in the figure on the previous page. However, these concepts and workflows 
are applicable and beneficial for any project and industry, and Helix Platform enables various degrees of responsibility separation for the specific 
project context. The roles, responsibilities, and system lifecycle considerations can be decisive factors for software architecture aspects, as the 
integration of the STL will show. 

Arm Software Test Library (Software BIST)

Arm STLs are libraries containing software functions that check the presence of permanent faults within the processor logic. Each STL is 
developed and optimized for a specific Arm processor, which enables targeting of explicit nodes in the design. STLs provide an additional 
diagnostic mechanism, which can be used to assist in achieving the overall system safety metric requirements. 

STLs are commonly employed in applications with lower safety integrity levels such as SIL 2 or ASIL B, where duplication of logic such as Dual-
Core Lockstep can be avoided to preserve silicon area and reduce cost and power requirements. Although less common, high safety integrity 
applications (e.g., ASIL D, SIL 3) can also benefit from STLs at boot time to potentially stimulate hardware faults not exercised by application 
code. The following figure provides a qualitative comparison of STLs versus other safety mechanisms.

Functional tests in Arm STLs are coded in Assembly to deliver deterministic 
execution and fault coverage, while requiring minimal code footprint. These 
functions are typically invoked from the STL’s C-based scheduler in round-
robin fashion. The Cortex-A53 STL used in this example, for instance, requires 
about 100KB ROM and 10KB RAM. It fully executes in only 161K CPU clock 
cycles in EL 3 with an interrupt-disabled window of just 6,200 cycles, or about 
5µs. STL basic software architecture is shown in the figure at right.

Most of the Cortex-A53 STL functions can be executed in the OS at EL 1 or 
the hypervisor at EL 2. However, to achieve maximum coverage of random 
permanent faults in the CPU, control register testing must execute with the 
highest privilege in EL 3. Fully executing all Cortex-A53 STL tests provides 
single-point fault metric (SPFM) coverage for processors, including memories 
based on netlist ports. This means that when building on additional hardware 
safety mechanisms such as error correction code (ECC), it becomes much 
easier to exceed the recommended 90% SPFM for ISO 26262 ASIL B.
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INTEGRATION OF THE ARM STL AND HELIX PLATFORM 
The build process of the STL outputs a set of object files for the Armv8 architecture 
that must be linked to the operating software so that the tests can run on the respective 
Exception level within the intervals derived from the FMEDA of the hardware. Entry points 
into the STL are functions to set up and run the test suite, with guidance and example code 
provided along with the User’s Guide.

When running all STL tests across EL 1, EL 2, and EL 3 to achieve maximum coverage, it 
usually requires linking the library objects separately to each layer of the software stack. 
This results in multiple copies of the same objects at  runtime, as the figure at right shows. 
However, this overhead is usually acceptable if the size of the STL object file is less than 
150KB. In addition, the object files can be reduced to only the subset of tests for the 
respective Exception level. This instantiation only creates a challenge for the TF-A layer 
in the demonstrator, where adding the STL exceeds the platform-specific limitations for 
on-chip memory that stores the firmware by default. Selecting the option to build the TF-A 
for RAM storage solves this problem. In an actual safety system, and depending on the 
safety requirements, users can also opt to run a subset of the library functions executed at 
lower Exception levels, e.g.,  EL 0 and EL 1, to benefit from inherent containment.

In a standard system setup, the TF-A is loaded before the boot loader and the OS are loaded. 
The secure monitor part of the TF-A that runs at EL 3 cannot be replaced or extended by any 
other part in the software stack during runtime, and therefore execution of the STL tests at 
EL 3 demands linkage of the STL with the TF-A. Execution of the EL 3 tests is initiated from 
the hypervisor level using the SMC instruction4 with a custom handler in the TF-A.

Starting the STL tests in the guest OS for the EL 1 and in the hypervisor for EL 2 on a 
specific processor core is a trivial call to the Arm functions, and execution in the hypervisor 
and the TF-A can be triggered from the lower Exception levels using hypercall and secure 
monitor call API. The use of these functions must be assessed within the overall system 
architecture, in particular for safety-certifiable systems that have strict requirements for 
timing and determinism. 

The main consideration for starting execution of the STL should be the alignment with the 
overall system timing and scheduling and how the guest OS will utilize different processor 
cores within the schedule. This assessment must include both the frequency and duration 
of the STL execution for each Exception level, and the potential impact on the guest OS or 
application execution as well as jitter caused by interrupt locking during the tests. 

Additional requirements can be introduced by SoC designs with heterogenous processor 
cores or clustering of cores, as well as other hardware test libraries alongside the Arm STL 
to monitor SoC vendor IP or other peripherals or FPGA functions. Such considerations are 
outside the scope of this paper, but the example in this paper can provide guidance.

Three different options for integration of the Arm STL with Helix Platform can be considered:

 – Option 1: Dedicated partition for test execution
 – Option 2: Test execution started from a regular guest OS within the time allotted to 

the partition
 – Option 3: Test execution within the hypervisor
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The following sections give an overview on the implementation 
details and considerations around each of these options. Common 
to all three options is the reporting of error conditions when the 
STL fails, which can use the existing health monitoring framework 
of Helix Platform. This framework enables data-driven configura-
tion by the system integrator according to the error policy of the 
system, with customizable error handlers to reboot the system, 
switch to safe or degraded operation modes, or simply to record 
found issues and await several failure occurrences before triggering  
further actions.

Option 1: Dedicated Test Partition

The dedicated partition for executing the Arm STL has advantages 
from a system design perspective, as it gives the system integrator 
full control over the scheduling of the tests, as part of the overall 
system schedule or on a per-processor core base, and fault detec-
tion is separated from the application level. 

The footprint of a dedicated test partition is primarily dependent 
on the guest OS, where a safety-certifiable VxWorks guest OS usu-
ally requires not more than 5 MB of storage and 64 MB of runtime 
memory. When execution time and footprint are even more criti-
cal, the support for bare-metal OS-less VMs in Helix Platform can 
be leveraged to replace the guest OS with a basic loop to execute 
the Arm STL and report errors to the health monitoring framework 
using the low-level hypercall API of the hypervisor.

The following figures show two potential system schedules with 
multiple application payloads and the test partition scheduled inter-
mittently. In the first figure, a single test partition with its own multi-
core guest OS will execute on all four cores of the system at the 
same time, and scheduling the execution of the STL on each core is 
implemented within the guest OS.  

Defining separate test partitions for each core is a way to indepen-
dently schedule STL execution on each core, as depicted in the next 
figure. This can bring significant advantages in system configura-
tions where the cores host different applications with different 
safety-criticality levels and requirements on scheduling or periodic-
ity. The Arm STL does not require to stop parallel application pro-
cessing on other processor cores. This approach consumes more 
runtime memory, as the test partition will be instantiated four times 

in memory and might require more analysis on interference and 
contention due to parallel scheduling of application payloads and 
STL on different cores. 

The integration example will be based on the system schedule 
in the first figure, with one test partition instance executing on all 
cores in parallel.

Tests on the Exception levels 2 (hypervisor) and 3 (TF-A) are exe-
cuted synchronously on the core where the test partition triggered 
the execution with the respective hypercall API. There is no impact 
to the other cores, where execution continues in the context and 
Exception level of the currently scheduled guest OS. System sched-
uling is also not impacted by the switch to EL 2 or EL 3 unless inter-
rupts are masked by the STL at the higher privilege levels, while a 
VM switch is due based on the schedule. The system integrator is 
responsible for assessing this as part of the worst-case execution 
time scenarios for the STL and must ensure a sufficient time bud-
get for test execution.

Option 2: Test Execution Within the Hypervisor 

Since the Arm STL only requires execution of tests on EL 2 and EL 3 
for highest coverage, the test partition could be more efficient if it 
only runs at EL 2 (hypervisor) level without the need for an extra 
virtual machine at EL 1. This is possible in the Helix hypervisor when 
the STL execution is implemented with a manager thread inside 
the hypervisor, and the test partition time window is configured to 
schedule the manager instead of a VM. The implementation of the 
manager requires more care to make sure the manager does not 
interfere with the normal operation of the hypervisor or the time 
partitioning. Since managers are single-core threads, the STL exe-
cution can be scheduled in parallel or independently on each core, 
as with the test partitions.

While the demonstrator will show that the performance gain by 
removing the switch to a different VM is only modest, the manager-
based implementation has more significant impact on the memory 
footprint, as there is no need for one or more additional safety-
critical guest OS instances to start the STL. The disadvantage is that 
managers do not have access to advanced services provided by the 
guest OS, such as file systems or networking to propagate or store 
test results.
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Hooks in the hypervisor offer the ability to add custom functions that get 
called upon in internal events of the hypervisor, allowing implementing 
the call to the STL as part of the VM switch event. Using this approach, 
the STL execution could be completely hidden inside the hypervisor 
and altogether removed from the time window configuration.

However, loading STL execution overhead onto the schedule switch 
event or consuming time from the defined VM time windows will 
increase delay and jitter of the system and contradict the hypervi-
sor’s design, aiming to keep the overhead of VM switching at the 
minimum by leveraging the advanced processor virtualization fea-
tures in the Armv8 architecture. Due to these limitations, the STL 
execution on hypervisor events should only be considered for spe-
cial use cases and is not implemented in this paper.

Option 3: Test Execution Within Application Context

When the overall system architecture makes the use of a dedicated 
test partition difficult, or when the STL integration should be the 
responsibility of the application developer, the test execution can 
also be started from a thread inside a regular application partition. 
The VxWorks guest OS provides different concepts to define timely 
execution of the STL within the required periods of time, such as 
periodic processes with configurable deadlines to monitor jitter, or a 
time-partitioned scheduler on the guest OS level to define time win-
dows for threads as well.

Execution of the STL on EL 2 and EL 3 will be under the same condi-
tions as for the dedicated test partition, but execution time for the 
STL will be deducted from the time budget of the application pro-
cesses inside the partition thread. Moreover, the application partition 
must be granted permission to make hypervisor calls, which must be 
balanced with security and safety requirements.

The decision to synchronize the STL execution within different appli-
cations on different cores would be the responsibility of application 
developers in this scenario. This can become impossible if applica-
tions are supplied by different third parties potentially unbeknownst 
to each other. Since the Arm STL can be executed independently on 
each processor core, such synchronization may not be necessary 
and should be confirmed by the system integrator. 

Timely execution of the STL within the required intervals for the 
system FTTI (Fault Tolerant Time Interval) must be ensured on the 
application level by using appropriate thread priorities and could be 
augmented by an additional level of system-wide monitoring on the 
hypervisor level, which can preempt any application processes.

Interrupt locking during the STL execution needs special consider-
ation in this scenario, where, for example, a periodic guest OS sys-
tem clock tick must not overlap with the test library, as the interrupt 
locking sections could cause a tick miss with impact on periodic 
process timing. The dedicated test partition, with its separate VM 
context, leverages the ability of the hypervisor to manage the con-
sistent time base for the application guest OS.

A big advantage of this architecture is the required processor time. 
Switching tasks is only slightly less costly than switching VMs, but 
the ability to continue application execution immediately after the 
test cycle will bring the time budget for STL execution closer to 
the average test time, whereas the dedicated test partition or the 
hypervisor-based manager has a statically defined scheduled time 
frame that must accommodate the worst-case scenario, including 
error handling over the whole operational time of the system.

Similar to the approach to implement the STL execution in a manager 
thread, the application-level STL thread’s footprint is significantly 
smaller without the need for an extra guest OS just for the STL.

DEMONSTRATION 
Implementation and Performance on a  
Quad-core Cortex-A53

Integration of the STL and Helix Platform is demonstrated on the 
four Cortex-A53 cores in a Xilinx Zynq UltraScale+ MPSoC at 1.2 
GHz with the latest release of Helix Platform Cert Edition.

The demonstrator covers both the dedicated test partition and the 
integration with an application partition. Performance is measured 
using the Performance Monitoring Unit (PMU)5 with both Cycle 
Count and Event Timer measurement, as well as the Arm generic 
timer that serves as the time base for the hypervisor and guest OS. 
All three methods of measurement provided similar results within 
a small corridor. Measuring on different cores showed only slightly 
lower performance on core 0, which is expected as system-wide 
management is handled on this core by default. The tables in this 
section contain the average and standard deviation of all three 
measurement methods and over cores 1–3. 
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Arm STL Execution 

Execution performance of the STL tests is measured in the hypervi-
sor and in the guest OS. Instrumenting the TF-A has been avoided 
deliberately for the overhead of extracting the data from EL 3, there-
fore measurements for EL 3 include the small overhead of the SMC 
call. All measurements collected data over 10,000 iterations for 
each core and for each time measurement method. The tables give 
the mean value of all iterations, cores, and measurements plus the 
coefficient of the standard deviation for the entire population (σ).

The particular SoC design of the Xilinx Zynq UltraScale+ MPSoC 
required disabling three tests at the EL 3 that are not applicable to 
this hardware design. The deactivated tests account for only 3% of 
the overall EL 3 test set execution in terms of cycle times.

Measurement Mean Coefficient of SD
EL 3 Tests from Hypervisor* 22.4 µs 1.8 %
EL 2 Tests from Hypervisor 9.7 µs 0.4 %
EL 2 Tests from Guest OS* 14.2 µs 0.2 %
EL 1 Tests from Guest OS 9.8 µs 0.3 %

The measurements marked with (*) include the round-trip Exception 
level transitions (SMC from hypervisor and hypercall from guest 
OS) in the measurements.

The Exception level switch overhead alone between guest OS, 
hypervisor, and TF-A is dependent on the implementation of the 
handlers, and it can be an indicator for the choice of where to imple-
ment the STL calls in a system. The following table gives the mea-
surements for executing round-trip hypercalls into the hypervisor 
and SMC calls into the TF-A over 10,000 iterations on each core.

Measurement Mean Coefficient of SD
Hypercall: EL 1 to EL 2 2.1 µs 0.4 %
SMC Call: EL 2 to EL 3 0.18 µs 0.6 %

Depending on the implementation in a dedicated test partition with 
a guest OS, the manager thread in the hypervisor, or the application-
level thread, the scheduling of the STL has a different overhead due 
to the context switch from the application. The transitions were 
measured as round-trip times, where the scheduled entity collected 
only the timing data, and for the rest of the time the system either 
called the PMU or generic timer in a close loop (idle scenario) or 
performed permanent memory writing to an array of 20MB to simu-
late high bus and cache load (load scenario). The data has been 
collected over at least 400 iterations each.

Round-Trip  
Scheduling 
Overhead

Idle Load

Mean Coeff. of SD Mean Coeff. of SD

VM to Test 
Partition (VM)

13.4 µs 0.7% 13.5 µs 0.8%

VM to Manager 9.3 µs 1.1% 9.4 µs 1.0%
Periodic 
Application 
Thread 

16.3 µs 1.3% 16.4 µs 1.3%

Integration Example 1: Dedicated Test Partition

The total overhead of running the STL on all cores of the quad-core 
Xilinx Zynq UltraScale+ MPSoC with Helix Platform is measured to 
assess a real-world scenario and determine a rough order of magni-
tude of computing time that the STL requires in a system. The STL 
can be scheduled independently for each processor core, so the over-
head for cross-core synchronization of the tasks can be avoided.

The demonstrator for the dedicated test partition implements the 
STL execution at EL 2 and EL 3 for maximum coverage in tasks with 
core affinity, where the OS functionality for periodic activation of 
tasks is used. Timestamps are taken from the guest OS level before 
and after the STL execution is initiated through a hypercall API.

Measurement Mean Coefficient of SD
STL in Parallel on 4 Cores 
Without Partition Switch

40.9 µs 0.4%

The result is slightly higher than the sum of the numbers for the 
hypercall from EL 1 to EL 2 plus the execution of the STL on EL 2 
and EL 3, but it is still in the expected range.

The complete time of the dedicated test partition will include the 
time to switch the application VM out and in again, which is around 
13.5 µs per STL run. Therefore, the net execution per STL cycle is 
about 55 µs including the partition switch, although the static time 
window length for the test partition must be configured to include 
worst-case scenarios.

Assuming a system with a realistic FTTI of 10ms, the execution  
of the STL on all four cores requires about 0.5% of the overall avail-
able computing time in this demonstrator system without worst-
case overhead. 
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Integration Example 2:  Hypervisor Manager

While the dedicated test partition requires switching from one VM 
context at EL 1 to a different one — including, for example, different 
memory mappings that require replacement of TLB entries in the 
MMU — the implementation of the STL in a hypervisor manager also 
removes the costly round trip of transition between the guest OS (EL 
1) and the hypervisor (EL 2), as it runs within the same hypervisor 
context as the system-level scheduling. 

This reduces the time for context switch and execution of the STL 
from about 55 µs for the test partition with guest OS down to 50 µs. 
As with the dedicated test partition, the static time window must be 
configured to accommodate worst-case scenarios. 

For our example system with an FTTI of 10ms, the net overhead of 
the Arm STL is again in the range of 0.5% for this approach.

Integration Example 3:  Execution in  
Application Context

Implementing the STL execution in a high-priority periodic task 
within the application partition and independently on each core, 
the impact on the available computing can be reduced as the 
processor is released immediately after completing the STL and 
priority-preemptive tasks can reclaim processor time. This allows 
measuring the actual time that normal processes are interrupted 
during STL execution. Scheduling the STL from the application level 
reintroduces the overhead of the hypercall API and, depending on 
the design of the guest OS, an additional transition from user space 
(EL 0) to the guest OS kernel (EL 1) could be required.

Measurement Mean Coefficient of SD
STL in High-Priority Task 
with Rescheduling 
on One Core

40.9 µs 0.4%

When executing the STL independently on each core, without the 
need for cross-core synchronization of the tasks, the results dem-
onstrate the small impact of periodic execution of the STL in a task 
in a safety-critical VxWorks guest OS. 

Again, under the assumption of an FTTI of 10ms, the available com-
puting time is reduced by 0.6%. This number is slightly higher than 
for the approaches with a separate VM or manager; however, there 
is no need to statically allocate time for worst-case scenarios, as in 
the other cases.

CONCLUSION 
The integration of the Arm STL in a demonstrator system with Helix 
Platform shows that the impact on overall system performance is 
in the order of 0.5% on an actual Cortex-A53 system with assumed 
FTTI of 10ms. Different practical approaches to integrate the STL 
within a complex safety-certifiable OS architecture are discussed 
and demonstrated; each solution offers slightly different advan-
tages, while the OS overhead is within the same range. This gives 
the designer or system integrator of a safety system a set of options 
to ensure the best alignment with the technical, safety, and proj-
ect organization requirements, especially for complex scenarios 
in which independent applications of different safety-criticality or 
from different vendors need to be integrated into one system.

The Helix Platform OS offers proven functionality with a safety-cer-
tification pedigree to schedule the STL and monitor timely execu-
tion and jitter, and a health monitoring framework records failures 
and takes appropriate actions in case the test execution detects a 
hardware failure.

The highest-level coverage of the Arm STL can only be achieved by 
including the tests that run on Exception level 3 of the processor, 
which is out of the scope of an OS and is managed by the TF-A on 
commercial processors. Integrating the Arm STL with the TF-A on 
the Xilinx processor is only a small technical challenge, due to the 
few assumptions on the execution environment for the test library. 
In certain cases, the additional coverage of EL 3 tests may not be 
required to achieve the desired safety goals, thus simplifying devel-
opment. Actual projects might see challenges in different responsi-
bilities for integration of the STL libraries with the OS or applications 
and the platform firmware, and system designers should take this 
into account early in the process.

The demonstration in this white paper focuses only on the soft-
ware–software integration aspects of the Arm STL and does not 
go into the hardware-specific aspects of the integration of the 
Cortex-A53 processor core into the Xilinx Zynq MPSoC design, 
except that some tests had to be deactivated as they do not apply 
to this specific processor design.

For more details on the integration and code examples, please con-
tact your Wind River representative for access to a Technical Note.
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