
Software Stack with
Designing a Complex

Integration of the Arm Software Test Library with
the Wind River Safety-Certifiable Hypervisor

Stefan Harwarth
Senior Field Application Engineer

Hardware Safety Assurance

DESIGNING A COMPLEX SOFTWARE STACK WITH HARDWARE SAFETY ASSURANCE

2 | White Paper

EXECUTIVE SUMMARY

Functional safety is increasingly critical across a range of markets, and more powerful and

complex software solutions are required in areas such as autonomous driving and related

services, intelligent avionics devices, and self-organized factory floors. The higher the criticality

and the less human control is involved, the higher the inherent risk for the airplane or car, as

reflected by the Safety Integrity Level or Design Assurance Level associated with the device.

Meeting the requirements of safety standards such as ISO 26262 (automotive) and IEC 61508
(industrial) for high integrity levels requires rigid formal methodologies and documentation,
not only in the development process of hardware and software but also the continuous
monitoring and reporting of random hardware faults during the operation of the device. One
of the methodologies commonly used for highest safety integrity is Dual-Core Lockstep,
whose output from redundant CPUs is continuously compared to ensure detection of any
fault that leads to output corruption. This type of system is expensive, in the need to double
the CPU area, and it becomes less viable when applications require the computational
power of modern multi-core SoCs with four or even 16 processor cores. In this case, the
use of self-testing techniques such as Software Test Libraries (STL) is a common approach
to achieve the integrity requirements of the standards.1

Managing the complexity of a modern multi-core processor or system-on-chip (SoC)

requires a powerful operating system (OS) platform that offers the application developer

an abstract yet flexible programming environment such as AUTOSAR Adaptive, as well as

robust techniques for separation, partitioning, and fault containment, as the foundation to

achieve formal safety certification.

The integration of a software test library, with assumptions of use guided by the internals of

the processor design and a complex software stack for a multi-core partitioned OS, touches

different facets of the design of safety-critical software systems. While performance and the

amount of processor time required for the test library might be known off the top of one’s

head, design choices about where the STL is integrated in the software stack can have a

significant influence on system integration and validation aspects.

Thanks to Guilherme Marshall (director, ADAS Go-to-Market) and James Scobie (director, Product
Management) from Arm for their support in the creation of this white paper.

DESIGNING A COMPLEX SOFTWARE STACK WITH HARDWARE SAFETY ASSURANCE

CONTENTS
EXECUTIVE SUMMARY  � 2

OVERVIEW   � 4

ARCHITECTURE   � 4

Hardware Architecture   �  4

Helix Platform Architecture   �  5

Arm Software Test Library (Software BIST)   �  6

INTEGRATION OF THE ARM STL AND HELIX PLATFORM   � 7

Option 1: Dedicated Test Partition  �  8

Option 2: Test Execution Within the Hypervisor   �  8

Option 3: Test Execution Within Application Context   �  9

DEMONSTRATION   � 9

Implementation and Performance on a Quad-core Cortex-A53   �  9

Arm STL Execution   � 10

Integration Example 1: Dedicated Test Partition   � 10

Integration Example 2: Hypervisor Manager   � 11

Integration Example 3: Execution in Application Context   � 11

CONCLUSION   � 11

REFERENCES  � 12

3 | White Paper

DESIGNING A COMPLEX SOFTWARE STACK WITH HARDWARE SAFETY ASSURANCE

4 | White Paper

OVERVIEW
The Wind River® Helix™ Virtualization Platform (Helix Platform) is a
true Type 1 hypervisor–based operating platform enabling mixed
criticality OS and applications to run on multi-core processors.
That requires robust separation and design to achieve certification
to the highest levels of safety criticality, such as ISO 26262 ASIL D,
DO-178C Level A, or IEC 61508 SIL 3 and SIL 4. Leveraging years of
experience and industry leadership in safety-critical and embedded
hypervisor software technologies, Helix Platform is building on the
highly successful VxWorks® 653 Multi-core Edition, which is used in
multi-core avionics systems up to the highest safety assurance level.

Helix Platform architecture leverages advanced processor
protection features of the Arm® v8 architecture such as hypervisor
and supervisor privilege levels, and the memory management unit
(MMU) and system memory management unit (SMMU) to provide
separation and fault containment for applications in independent
partitions, as seen in the figure.

Designing a safety-certified system with Helix Platform requires
formal documentation of processes, requirements, design,
and verification for the complete codebase of the OS software.
Wind River addresses this need with a commercial off-the-shelf
evidence documentation package, including a safety manual and
an automated verification test harness to verify the operation of
the software on a specific customized hardware, such as an ADAS
controller board or the primary flight display computer of an aircraft.

However, the safety processes and documentation for software
only address systematic errors under the assumption that the
underlying processor hardware is working correctly. At the same
time, the safety standards authors are aware of the additional risk
of statistical electrical or mechanical failure of hardware. Similarly
strict certification activities are therefore required on the hardware
side, including continuous monitoring to prove the required failure
rates, such as <1 failure per 1 billion hours of operation at IEC 61508
SIL 4 or ISO 26262 ASIL D for systems or subsystems.

To help OEMs achieve higher hardware diagnostic coverage more
efficiently, Arm produces software test libraries (STL) for many of
its processors. Compared to other diagnostic techniques such as
logic built-in self-tests (LBIST), STLs are more flexible and can save
significant power and silicon area. Along with source code, STL users
get access to a safety package including a safety manual and FMEDA
report to assist in integrating the STL within their safety concept.

The integration of this low-level STL with a complex multi-tiered
OS creates challenges that are further amplified by the restrictions
of safety-critical software architecture design. The frequency and
execution time of the STL to achieve diagnostic coverage has
direct impact on the available computational power for OS and
applications, and this impact needs to be quantified.

This paper will discuss different approaches for the integration of
STL and OS and provide results based on a demonstrator using a
Xilinx Zynq® UltraScale+ MPSoC with four Arm Cortex-A53 cores.

ARCHITECTURE
Hardware Architecture

The Zynq® UltraScale+™ MPSoCs from AMD Xilinx form a scalable
portfolio of heterogenous multi-processing devices. This hardware
platform is based on the combination of 16nm FinFET+ program-
mable logic with processing systems built on Cortex-A53 and
Cortex-R5(F) CPUs and the Arm Mali-400 MP2 GPU.

Central to the application processing unit, Cortex-A53 is a 64-bit
capable processor IP, released in 2014 and based on Armv8.0-A
architecture. It features hardware virtualization capabilities to
enable simultaneous execution and separation of multiple guest
OSes under the control of a hypervisor, such as Helix Platform. To
realize this, the Cortex-A53 processor implements Exception levels
EL 0 to EL 3, each with increasing execution privileges. A typical
software stack could be mapped to different Exception levels as per
the figure above.

Processor
Guest OS

Interconnect

DMA

VA

IPA

IPA
PA

PA

MMU

MMU

SMMU

EL0

Hypervisor

EL1

EL2

EL3 Secure Monitor/Firmware

App(s)App(s)

Guest OS

App(s)App(s)

Guest OS

Trusted Services

Trusted OS
Source: Arm

Source: Arm

DESIGNING A COMPLEX SOFTWARE STACK WITH HARDWARE SAFETY ASSURANCE

Helix Platform Architecture

Helix Platform uses a Type 1 hypervisor — also known as a bare
metal hypervisor — that runs directly on the processor to provide
near-native real-time performance, including the direct delivery of
interrupts to the guest OS. This approach enables higher perfor-
mance, determinism, scalability, and small footprint with minimal
overhead suitable for safety certification. It contrasts with the Type
2 hypervisor, which is an application running in a general purpose
or real-time OS with a focus on convenience, abstraction, or emu-
lation. It can even provide the option of over-provisioning existing
hardware resources, usually for IT use cases.

The Helix Platform Type 1 hypervisor uses the processor’s dedi-
cated hypervisor privilege level and hardware virtualization support,
enabling various 32-bit and 64-bit guest OSes and associated appli-
cations to run at separate Exception levels of the Arm architecture
inside virtualized machines (VM), including support for OS-less
bare metal virtual machines. The hypervisor uses MMU and SMMU
capabilities to ensure isolation and fault containment for the differ-
ent VMs to maximize safety and security, and to enable consolida-
tion of multiple independent safe and non-safe applications into a
single processing platform. In the context of avionics systems, the
combination of an isolated guest OS and application is referred to
as a partition.2

For the Armv8-A architecture, Helix Platform builds the hypervisor
and the VxWorks guest OS from source code using modern com-
piler toolchains based on Clang/LLVM, which provide support for
the latest C and C++ features and standards and performance ben-
efits, such as fast compilation times, low memory usage, superior
code optimization, and integration with third-party tools for code
analysis and quality assurance.

The hypervisor scheduler for the VMs uses a frame scheduler
scheme based on a repetitive sequence of fixed time windows,
called a major frame, as depicted below. Every VM in the major
frame has a time budget configured at build time and validated
with the platform. This provides the option of sharing a processor
core between multiple VMs. Helix Platform can schedule one VM

in parallel on multiple cores within the same time window, thus
enabling multi-core VMs, often referred to as SMP guest OSes. The
hypervisor can synchronize the major frames on processor cores,
or cores or groups of cores can run on independent schedules.

Once the initialization phase is completed, the hypervisor is, for
the most part, responsible only for switching the VMs according
to the schedule, arbitration and emulation of hardware resources
shared between VMs, and system-level error handling. Dedicated
hypervisor services such as major frame schedule changes can
be requested from a trusted guest OS using a hypercall API imple-
mented with the hypervisor call (HVC) instruction of Armv8-A
architecture. The implementation of hypervisor services is handled
mainly within separate single-core threads defined in a static table
— the so-called managers. Within each time window, both man-
agers and VMs are scheduled in a priority-based scheme, so that
high-priority managers such as the system-level exception handling
can preempt the execution of a VM within its time window. Managers
can also be restricted to be scheduled only in specific time windows
instead of a VM, a technique often used to allot dedicated time for
system-wide functionality that could otherwise interfere with VM exe-
cution, such as flushing I/O queues to storage or network hardware.

The hypervisor is leveraging the dedicated Exception level (EL) 2 of
the Armv8 architecture, whereas the guest OS is executing on EL 1,
with the added option of further separation of applications using EL
0. The Trusted Firmware-A (TF-A) at the highest EL 3 of the proces-
sor is outside the scope of the OS platform, and secure monitor
calls (SMC) are usually not performed during normal operation.

The safety evidence material from Wind River covers the VxWorks
Cert Edition guest OS to implement safety-critical applications on EL
1, with optional use of EL 0 for further separation within the partition.

5 | White Paper

Major Frame

IDLE

VM1 VM2 VM3 VM1 VM2 VM2 VM1

Manager
Minor Frame

Partition / VM

Application Application
Developer

Platform
Provider

Guest OS

Helix Platform Safety Hypervisor

Trusted Firmware A

System Configuration

Armv8-A Hardware

System
Integrator

DESIGNING A COMPLEX SOFTWARE STACK WITH HARDWARE SAFETY ASSURANCE

Fault containment and isolation between VMs is implemented on the hypervisor level, and an ARINC 653–compliant hierarchical health
monitoring framework provides failure reporting, escalation, and handling according to a table-based configuration. This approach enables the
system integrator to specify the course of action to take in the event of specific errors as part of the overall system configuration. Examples
for such actions are the warm restart of a VM following a floating-point exception in the application or switching to a safe/degraded operation
mode schedule upon ECC memory errors.

Helix Platform is designed to support customers in the clear separation of roles and responsibilities in their system lifecycle by enabling independent
development along with incremental updates of the platform and application code as well as the system configuration through a technique
called independent build, link, and load (IBLL). This is based on the roles of Platform Provider, Application Developer, and System Integrator as
defined in the DO-297 Standard3 for avionics systems and shown in the figure on the previous page. However, these concepts and workflows
are applicable and beneficial for any project and industry, and Helix Platform enables various degrees of responsibility separation for the specific
project context. The roles, responsibilities, and system lifecycle considerations can be decisive factors for software architecture aspects, as the
integration of the STL will show.

Arm Software Test Library (Software BIST)

Arm STLs are libraries containing software functions that check the presence of permanent faults within the processor logic. Each STL is
developed and optimized for a specific Arm processor, which enables targeting of explicit nodes in the design. STLs provide an additional
diagnostic mechanism, which can be used to assist in achieving the overall system safety metric requirements.

STLs are commonly employed in applications with lower safety integrity levels such as SIL 2 or ASIL B, where duplication of logic such as Dual-
Core Lockstep can be avoided to preserve silicon area and reduce cost and power requirements. Although less common, high safety integrity
applications (e.g., ASIL D, SIL 3) can also benefit from STLs at boot time to potentially stimulate hardware faults not exercised by application
code. The following figure provides a qualitative comparison of STLs versus other safety mechanisms.

Functional tests in Arm STLs are coded in Assembly to deliver deterministic
execution and fault coverage, while requiring minimal code footprint. These
functions are typically invoked from the STL’s C-based scheduler in round-
robin fashion. The Cortex-A53 STL used in this example, for instance, requires
about 100KB ROM and 10KB RAM. It fully executes in only 161K CPU clock
cycles in EL 3 with an interrupt-disabled window of just 6,200 cycles, or about
5µs. STL basic software architecture is shown in the figure at right.

Most of the Cortex-A53 STL functions can be executed in the OS at EL 1 or
the hypervisor at EL 2. However, to achieve maximum coverage of random
permanent faults in the CPU, control register testing must execute with the
highest privilege in EL 3. Fully executing all Cortex-A53 STL tests provides
single-point fault metric (SPFM) coverage for processors, including memories
based on netlist ports. This means that when building on additional hardware
safety mechanisms such as error correction code (ECC), it becomes much
easier to exceed the recommended 90% SPFM for ISO 26262 ASIL B.

6 | White Paper

Dual Core Lockstep Software Test Library Logic BIST
Low High Low High Low High

Fault coverage

Response speed

Flexibility

Power efficiency

Area efficiency

Fault coverage

Response speed

Flexibility

Power efficiency

Area efficiency

Fault coverage

Response speed

Flexibility

Power efficiency

Area efficiency

Source: Arm

C based (MISRA-C Compliant) Assembly Language

Block 2 Block 3 Block 4 Block nBlock 1

STL scheduler

API

P1 P2

P3

...

P4

Pn

P1 P2

P3

...

P4

Pn

P1 P2

P3

...

P4

Pn

P1 P2

P3

...

P4

Pn

P1 P2

P3

...

P4

Pn

Source: Arm

DESIGNING A COMPLEX SOFTWARE STACK WITH HARDWARE SAFETY ASSURANCE

INTEGRATION OF THE ARM STL AND HELIX PLATFORM
The build process of the STL outputs a set of object files for the Armv8 architecture
that must be linked to the operating software so that the tests can run on the respective
Exception level within the intervals derived from the FMEDA of the hardware. Entry points
into the STL are functions to set up and run the test suite, with guidance and example code
provided along with the User’s Guide.

When running all STL tests across EL 1, EL 2, and EL 3 to achieve maximum coverage, it
usually requires linking the library objects separately to each layer of the software stack.
This results in multiple copies of the same objects at runtime, as the figure at right shows.
However, this overhead is usually acceptable if the size of the STL object file is less than
150KB. In addition, the object files can be reduced to only the subset of tests for the
respective Exception level. This instantiation only creates a challenge for the TF-A layer
in the demonstrator, where adding the STL exceeds the platform-specific limitations for
on-chip memory that stores the firmware by default. Selecting the option to build the TF-A
for RAM storage solves this problem. In an actual safety system, and depending on the
safety requirements, users can also opt to run a subset of the library functions executed at
lower Exception levels, e.g., EL 0 and EL 1, to benefit from inherent containment.

In a standard system setup, the TF-A is loaded before the boot loader and the OS are loaded.
The secure monitor part of the TF-A that runs at EL 3 cannot be replaced or extended by any
other part in the software stack during runtime, and therefore execution of the STL tests at
EL 3 demands linkage of the STL with the TF-A. Execution of the EL 3 tests is initiated from
the hypervisor level using the SMC instruction4 with a custom handler in the TF-A.

Starting the STL tests in the guest OS for the EL 1 and in the hypervisor for EL 2 on a
specific processor core is a trivial call to the Arm functions, and execution in the hypervisor
and the TF-A can be triggered from the lower Exception levels using hypercall and secure
monitor call API. The use of these functions must be assessed within the overall system
architecture, in particular for safety-certifiable systems that have strict requirements for
timing and determinism.

The main consideration for starting execution of the STL should be the alignment with the
overall system timing and scheduling and how the guest OS will utilize different processor
cores within the schedule. This assessment must include both the frequency and duration
of the STL execution for each Exception level, and the potential impact on the guest OS or
application execution as well as jitter caused by interrupt locking during the tests.

Additional requirements can be introduced by SoC designs with heterogenous processor
cores or clustering of cores, as well as other hardware test libraries alongside the Arm STL
to monitor SoC vendor IP or other peripherals or FPGA functions. Such considerations are
outside the scope of this paper, but the example in this paper can provide guidance.

Three different options for integration of the Arm STL with Helix Platform can be considered:

 – Option 1: Dedicated partition for test execution
 – Option 2: Test execution started from a regular guest OS within the time allotted to

the partition
 – Option 3: Test execution within the hypervisor

7 | White Paper

EL0

EL1

EL2

EL3

Partition / VM

User-mode
Application

Kernel-mode Application

Arm
STL

Guest OS
VxWorks 7 Cert

Arm
STL

Helix Platform
Safety Hypervisor

Arm
STLTrusted Firmware A

System Configuration

Armv8-A Hardware

Arm
STL

DESIGNING A COMPLEX SOFTWARE STACK WITH HARDWARE SAFETY ASSURANCE

The following sections give an overview on the implementation
details and considerations around each of these options. Common
to all three options is the reporting of error conditions when the
STL fails, which can use the existing health monitoring framework
of Helix Platform. This framework enables data-driven configura-
tion by the system integrator according to the error policy of the
system, with customizable error handlers to reboot the system,
switch to safe or degraded operation modes, or simply to record
found issues and await several failure occurrences before triggering
further actions.

Option 1: Dedicated Test Partition

The dedicated partition for executing the Arm STL has advantages
from a system design perspective, as it gives the system integrator
full control over the scheduling of the tests, as part of the overall
system schedule or on a per-processor core base, and fault detec-
tion is separated from the application level.

The footprint of a dedicated test partition is primarily dependent
on the guest OS, where a safety-certifiable VxWorks guest OS usu-
ally requires not more than 5 MB of storage and 64 MB of runtime
memory. When execution time and footprint are even more criti-
cal, the support for bare-metal OS-less VMs in Helix Platform can
be leveraged to replace the guest OS with a basic loop to execute
the Arm STL and report errors to the health monitoring framework
using the low-level hypercall API of the hypervisor.

The following figures show two potential system schedules with
multiple application payloads and the test partition scheduled inter-
mittently. In the first figure, a single test partition with its own multi-
core guest OS will execute on all four cores of the system at the
same time, and scheduling the execution of the STL on each core is
implemented within the guest OS.

Defining separate test partitions for each core is a way to indepen-
dently schedule STL execution on each core, as depicted in the next
figure. This can bring significant advantages in system configura-
tions where the cores host different applications with different
safety-criticality levels and requirements on scheduling or periodic-
ity. The Arm STL does not require to stop parallel application pro-
cessing on other processor cores. This approach consumes more
runtime memory, as the test partition will be instantiated four times

in memory and might require more analysis on interference and
contention due to parallel scheduling of application payloads and
STL on different cores.

The integration example will be based on the system schedule
in the first figure, with one test partition instance executing on all
cores in parallel.

Tests on the Exception levels 2 (hypervisor) and 3 (TF-A) are exe-
cuted synchronously on the core where the test partition triggered
the execution with the respective hypercall API. There is no impact
to the other cores, where execution continues in the context and
Exception level of the currently scheduled guest OS. System sched-
uling is also not impacted by the switch to EL 2 or EL 3 unless inter-
rupts are masked by the STL at the higher privilege levels, while a
VM switch is due based on the schedule. The system integrator is
responsible for assessing this as part of the worst-case execution
time scenarios for the STL and must ensure a sufficient time bud-
get for test execution.

Option 2: Test Execution Within the Hypervisor

Since the Arm STL only requires execution of tests on EL 2 and EL 3
for highest coverage, the test partition could be more efficient if it
only runs at EL 2 (hypervisor) level without the need for an extra
virtual machine at EL 1. This is possible in the Helix hypervisor when
the STL execution is implemented with a manager thread inside
the hypervisor, and the test partition time window is configured to
schedule the manager instead of a VM. The implementation of the
manager requires more care to make sure the manager does not
interfere with the normal operation of the hypervisor or the time
partitioning. Since managers are single-core threads, the STL exe-
cution can be scheduled in parallel or independently on each core,
as with the test partitions.

While the demonstrator will show that the performance gain by
removing the switch to a different VM is only modest, the manager-
based implementation has more significant impact on the memory
footprint, as there is no need for one or more additional safety-
critical guest OS instances to start the STL. The disadvantage is that
managers do not have access to advanced services provided by the
guest OS, such as file systems or networking to propagate or store
test results.

8 | White Paper

STL

Guest
OS

STL

Guest
OS

Application A

Application B

Application D

Application A

Application C

Application D

Application A

Application B

Application D

Core 0

Core 1

Core 3

Core 2

Major Frame Major FrameSTL Frame STL Frame

Application AApplication A STL STL

Application BApp B App C App C

Core 0

Core 1

Core 2

Core 3

Major Frame Major Frame

Application D Application D Application D Application D

STL App BSTL STL

STL STL

Application A

DESIGNING A COMPLEX SOFTWARE STACK WITH HARDWARE SAFETY ASSURANCE

Hooks in the hypervisor offer the ability to add custom functions that get
called upon in internal events of the hypervisor, allowing implementing
the call to the STL as part of the VM switch event. Using this approach,
the STL execution could be completely hidden inside the hypervisor
and altogether removed from the time window configuration.

However, loading STL execution overhead onto the schedule switch
event or consuming time from the defined VM time windows will
increase delay and jitter of the system and contradict the hypervi-
sor’s design, aiming to keep the overhead of VM switching at the
minimum by leveraging the advanced processor virtualization fea-
tures in the Armv8 architecture. Due to these limitations, the STL
execution on hypervisor events should only be considered for spe-
cial use cases and is not implemented in this paper.

Option 3: Test Execution Within Application Context

When the overall system architecture makes the use of a dedicated
test partition difficult, or when the STL integration should be the
responsibility of the application developer, the test execution can
also be started from a thread inside a regular application partition.
The VxWorks guest OS provides different concepts to define timely
execution of the STL within the required periods of time, such as
periodic processes with configurable deadlines to monitor jitter, or a
time-partitioned scheduler on the guest OS level to define time win-
dows for threads as well.

Execution of the STL on EL 2 and EL 3 will be under the same condi-
tions as for the dedicated test partition, but execution time for the
STL will be deducted from the time budget of the application pro-
cesses inside the partition thread. Moreover, the application partition
must be granted permission to make hypervisor calls, which must be
balanced with security and safety requirements.

The decision to synchronize the STL execution within different appli-
cations on different cores would be the responsibility of application
developers in this scenario. This can become impossible if applica-
tions are supplied by different third parties potentially unbeknownst
to each other. Since the Arm STL can be executed independently on
each processor core, such synchronization may not be necessary
and should be confirmed by the system integrator.

Timely execution of the STL within the required intervals for the
system FTTI (Fault Tolerant Time Interval) must be ensured on the
application level by using appropriate thread priorities and could be
augmented by an additional level of system-wide monitoring on the
hypervisor level, which can preempt any application processes.

Interrupt locking during the STL execution needs special consider-
ation in this scenario, where, for example, a periodic guest OS sys-
tem clock tick must not overlap with the test library, as the interrupt
locking sections could cause a tick miss with impact on periodic
process timing. The dedicated test partition, with its separate VM
context, leverages the ability of the hypervisor to manage the con-
sistent time base for the application guest OS.

A big advantage of this architecture is the required processor time.
Switching tasks is only slightly less costly than switching VMs, but
the ability to continue application execution immediately after the
test cycle will bring the time budget for STL execution closer to
the average test time, whereas the dedicated test partition or the
hypervisor-based manager has a statically defined scheduled time
frame that must accommodate the worst-case scenario, including
error handling over the whole operational time of the system.

Similar to the approach to implement the STL execution in a manager
thread, the application-level STL thread’s footprint is significantly
smaller without the need for an extra guest OS just for the STL.

DEMONSTRATION
Implementation and Performance on a
Quad-core Cortex-A53

Integration of the STL and Helix Platform is demonstrated on the
four Cortex-A53 cores in a Xilinx Zynq UltraScale+ MPSoC at 1.2
GHz with the latest release of Helix Platform Cert Edition.

The demonstrator covers both the dedicated test partition and the
integration with an application partition. Performance is measured
using the Performance Monitoring Unit (PMU)5 with both Cycle
Count and Event Timer measurement, as well as the Arm generic
timer that serves as the time base for the hypervisor and guest OS.
All three methods of measurement provided similar results within
a small corridor. Measuring on different cores showed only slightly
lower performance on core 0, which is expected as system-wide
management is handled on this core by default. The tables in this
section contain the average and standard deviation of all three
measurement methods and over cores 1–3.

9 | White Paper

Application AApplicationSTL

Application BApp BApp B App C App C

Core 0

Core 1

Core 2

Core 3

Major Frame Major Frame

Application D Application D

STL

STL STL

STL

STL

STL

STL

DESIGNING A COMPLEX SOFTWARE STACK WITH HARDWARE SAFETY ASSURANCE

Arm STL Execution

Execution performance of the STL tests is measured in the hypervi-
sor and in the guest OS. Instrumenting the TF-A has been avoided
deliberately for the overhead of extracting the data from EL 3, there-
fore measurements for EL 3 include the small overhead of the SMC
call. All measurements collected data over 10,000 iterations for
each core and for each time measurement method. The tables give
the mean value of all iterations, cores, and measurements plus the
coefficient of the standard deviation for the entire population (σ).

The particular SoC design of the Xilinx Zynq UltraScale+ MPSoC
required disabling three tests at the EL 3 that are not applicable to
this hardware design. The deactivated tests account for only 3% of
the overall EL 3 test set execution in terms of cycle times.

Measurement Mean Coefficient of SD
EL 3 Tests from Hypervisor* 22.4 µs 1.8 %
EL 2 Tests from Hypervisor 9.7 µs 0.4 %
EL 2 Tests from Guest OS* 14.2 µs 0.2 %
EL 1 Tests from Guest OS 9.8 µs 0.3 %

The measurements marked with (*) include the round-trip Exception
level transitions (SMC from hypervisor and hypercall from guest
OS) in the measurements.

The Exception level switch overhead alone between guest OS,
hypervisor, and TF-A is dependent on the implementation of the
handlers, and it can be an indicator for the choice of where to imple-
ment the STL calls in a system. The following table gives the mea-
surements for executing round-trip hypercalls into the hypervisor
and SMC calls into the TF-A over 10,000 iterations on each core.

Measurement Mean Coefficient of SD
Hypercall: EL 1 to EL 2 2.1 µs 0.4 %
SMC Call: EL 2 to EL 3 0.18 µs 0.6 %

Depending on the implementation in a dedicated test partition with
a guest OS, the manager thread in the hypervisor, or the application-
level thread, the scheduling of the STL has a different overhead due
to the context switch from the application. The transitions were
measured as round-trip times, where the scheduled entity collected
only the timing data, and for the rest of the time the system either
called the PMU or generic timer in a close loop (idle scenario) or
performed permanent memory writing to an array of 20MB to simu-
late high bus and cache load (load scenario). The data has been
collected over at least 400 iterations each.

Round-Trip
Scheduling
Overhead

Idle Load

Mean Coeff. of SD Mean Coeff. of SD

VM to Test
Partition (VM)

13.4 µs 0.7% 13.5 µs 0.8%

VM to Manager 9.3 µs 1.1% 9.4 µs 1.0%
Periodic
Application
Thread

16.3 µs 1.3% 16.4 µs 1.3%

Integration Example 1: Dedicated Test Partition

The total overhead of running the STL on all cores of the quad-core
Xilinx Zynq UltraScale+ MPSoC with Helix Platform is measured to
assess a real-world scenario and determine a rough order of magni-
tude of computing time that the STL requires in a system. The STL
can be scheduled independently for each processor core, so the over-
head for cross-core synchronization of the tasks can be avoided.

The demonstrator for the dedicated test partition implements the
STL execution at EL 2 and EL 3 for maximum coverage in tasks with
core affinity, where the OS functionality for periodic activation of
tasks is used. Timestamps are taken from the guest OS level before
and after the STL execution is initiated through a hypercall API.

Measurement Mean Coefficient of SD
STL in Parallel on 4 Cores
Without Partition Switch

40.9 µs 0.4%

The result is slightly higher than the sum of the numbers for the
hypercall from EL 1 to EL 2 plus the execution of the STL on EL 2
and EL 3, but it is still in the expected range.

The complete time of the dedicated test partition will include the
time to switch the application VM out and in again, which is around
13.5 µs per STL run. Therefore, the net execution per STL cycle is
about 55 µs including the partition switch, although the static time
window length for the test partition must be configured to include
worst-case scenarios.

Assuming a system with a realistic FTTI of 10ms, the execution
of the STL on all four cores requires about 0.5% of the overall avail-
able computing time in this demonstrator system without worst-
case overhead.

10 | White Paper

DESIGNING A COMPLEX SOFTWARE STACK WITH HARDWARE SAFETY ASSURANCE

Integration Example 2: Hypervisor Manager

While the dedicated test partition requires switching from one VM
context at EL 1 to a different one — including, for example, different
memory mappings that require replacement of TLB entries in the
MMU — the implementation of the STL in a hypervisor manager also
removes the costly round trip of transition between the guest OS (EL
1) and the hypervisor (EL 2), as it runs within the same hypervisor
context as the system-level scheduling.

This reduces the time for context switch and execution of the STL
from about 55 µs for the test partition with guest OS down to 50 µs.
As with the dedicated test partition, the static time window must be
configured to accommodate worst-case scenarios.

For our example system with an FTTI of 10ms, the net overhead of
the Arm STL is again in the range of 0.5% for this approach.

Integration Example 3: Execution in
Application Context

Implementing the STL execution in a high-priority periodic task
within the application partition and independently on each core,
the impact on the available computing can be reduced as the
processor is released immediately after completing the STL and
priority-preemptive tasks can reclaim processor time. This allows
measuring the actual time that normal processes are interrupted
during STL execution. Scheduling the STL from the application level
reintroduces the overhead of the hypercall API and, depending on
the design of the guest OS, an additional transition from user space
(EL 0) to the guest OS kernel (EL 1) could be required.

Measurement Mean Coefficient of SD
STL in High-Priority Task
with Rescheduling
on One Core

40.9 µs 0.4%

When executing the STL independently on each core, without the
need for cross-core synchronization of the tasks, the results dem-
onstrate the small impact of periodic execution of the STL in a task
in a safety-critical VxWorks guest OS.

Again, under the assumption of an FTTI of 10ms, the available com-
puting time is reduced by 0.6%. This number is slightly higher than
for the approaches with a separate VM or manager; however, there
is no need to statically allocate time for worst-case scenarios, as in
the other cases.

CONCLUSION
The integration of the Arm STL in a demonstrator system with Helix
Platform shows that the impact on overall system performance is
in the order of 0.5% on an actual Cortex-A53 system with assumed
FTTI of 10ms. Different practical approaches to integrate the STL
within a complex safety-certifiable OS architecture are discussed
and demonstrated; each solution offers slightly different advan-
tages, while the OS overhead is within the same range. This gives
the designer or system integrator of a safety system a set of options
to ensure the best alignment with the technical, safety, and proj-
ect organization requirements, especially for complex scenarios
in which independent applications of different safety-criticality or
from different vendors need to be integrated into one system.

The Helix Platform OS offers proven functionality with a safety-cer-
tification pedigree to schedule the STL and monitor timely execu-
tion and jitter, and a health monitoring framework records failures
and takes appropriate actions in case the test execution detects a
hardware failure.

The highest-level coverage of the Arm STL can only be achieved by
including the tests that run on Exception level 3 of the processor,
which is out of the scope of an OS and is managed by the TF-A on
commercial processors. Integrating the Arm STL with the TF-A on
the Xilinx processor is only a small technical challenge, due to the
few assumptions on the execution environment for the test library.
In certain cases, the additional coverage of EL 3 tests may not be
required to achieve the desired safety goals, thus simplifying devel-
opment. Actual projects might see challenges in different responsi-
bilities for integration of the STL libraries with the OS or applications
and the platform firmware, and system designers should take this
into account early in the process.

The demonstration in this white paper focuses only on the soft-
ware–software integration aspects of the Arm STL and does not
go into the hardware-specific aspects of the integration of the
Cortex-A53 processor core into the Xilinx Zynq MPSoC design,
except that some tests had to be deactivated as they do not apply
to this specific processor design.

For more details on the integration and code examples, please con-
tact your Wind River representative for access to a Technical Note.

11 | White Paper

DESIGNING A COMPLEX SOFTWARE STACK WITH HARDWARE SAFETY ASSURANCE

REFERENCES
1. N. Menon, “The Flexible Approach to Adding Functional Safety to a CPU,” October 2020, www.arm.com/products/development-tools/

embedded-and-software/software-test-libraries

2. ARINC Inc., “Avionics Application Software Standard Interface, Part 0, Overview of ARINC 653, Supplement 2,” SAE-ITC, 2019

3. RTCA/EUROCAE, “DO-297/ED-124 Integrated Modular Avionics Development Guidance and Certification Considerations,” 2005

4. Arm Limited, “SMC Calling Convention, ARM DEN 0028E 1.4,” 2022

5. Arm Limited, “ARM Cortex-A53 MPCore Processor TRM r0p4,” 2014

Wind River is a global leader of software for mission-critical intelligent systems. For 40 years, the company has been an innovator and pioneer, powering billions of devices and systems that require the highest
levels of security, safety, and reliability. Wind River offers a comprehensive portfolio of software and expertise that are accelerating digital transformation across industries.

© 2022 Wind River Systems, Inc. The Wind River logo is a trademark of Wind River Systems, Inc., and Wind River and VxWorks are registered trademarks of Wind River Systems, Inc. Rev. 11/2022

http://www.arm.com/products/development-tools/embedded-and-software/software-test-libraries
http://www.arm.com/products/development-tools/embedded-and-software/software-test-libraries

